
Chapter 6

[139]

Core Principle: Programming to an Interface instead
of an Implementation
One of the core principles of object-oriented programming is to always program to
an interface instead of a concrete object. Let us understand this in detail. Assume
that we have multiple kinds of products in our OMS (Order Management System)
such as foods, electronics and beauty products. To encapsulate these different
products, we create different classes, such as FoodProducts, ElectronicProducts,
BeautyProducts, and so on.

Because each product will have common properties and methods shared by all kinds
of products, for example Unit Cost, Size, Weight, and so on, we create an interface
called IProducts to list the basic behavior of a product.

public interface IProduct
{
 float UnitCost { get; set;}
 float Weight {get; set;}

 bool Update();
}

In this interface-IProduct- we have defined two basic fields with both getter and
setter properties, along with a method. (There can be more, but for the purpose of
our understanding, we will work with only these two properties and one method.)

Next, we create individual concrete product classes (one for each different product).
Here is one such class, BeautyProduct:

public class BeautyProduct:IProduct
{
 private float _unitCost;
 private float _weight;
 private int _forGender;
 public float UnitCost
 {
 get { return _unitCost; }
 set { _unitcost = value; }
 }

 public float Weight
 {
 get { return _ weight; }
 set { _ weight = value; }
 }

Design Patterns

[140]

 public int ForGender
 {
 get { return _ forGender; }
 set { _ forGender = value; }
 }

 public bool Update()
 {
 try
 {
 //code to update the product calling DAL method
 return ProductDAL.Update(this);
 }
 catch(Exception ex)
 {
 //log and rethrow…
 }
 }

In the above concrete class, we have implemented the IProduct interface with
concrete methods and properties. Note that we have added a property called
ForGender, which tells us the gender group to which this beauty product belongs.
This can be male, female or unisex, with each value being represented by an integer,
as in 1, 2, or 3.

Because this is a beauty product specific property, it is not present in the
interface, IProduct.

Now if we want to use BeautyProduct objects in our code, the first and simple
approach would be:

BeautyProduct bp = new BeautyProduct();

Let us understand this line in more detail. The new keyword is used to create a new
instance of a class. When using the new keyword, there are two important points
to consider—the "type" of the object on the left-side and the right-side of the new
keyword. In the above case, we are programming to a concrete implementation,
that is, BeautyProduct, so the type of the object bp is BeautyProduct, and the
implementation type is also BeautyProduct (as we have used in this syntax, new
BeautyProduct()).

